
 [Virtual computer network 1]

Instituto Superior Técnico, Universidade de Lisboa
Network and Computer Security

Lab guide:

Implementation and Analysis of
a Virtual Computer Network

rnl-virt version for RNL Labs at Alameda campus. Revised on 2016-10-10

Goals

 Implement and test a virtual computer network.

 Perform a simple TCP/IP packet analysis.

1. Introduction

This guide describes how to use the RNL computers and rnl-virt, the RNL virtualization system. The

tool’s documentation is available at https://rnl.tecnico.ulisboa.pt/servicos/virtualizacao/ and should be

referenced for additional command details.

rnl-virt relies on libvirt that is based on QEMU. Libvirt is a special daemon used to create, launch

and shutdown virtual machines. The physical machine is called the Host whereas the virtual machines

are called Guests. Each guest will use a version of Caixa Mágica Linux with low memory requirements.

Before you begin, logon to a lab machine running Linux using your IST account (e.g. ist123456).

You must restore and save your files for each work session.

Use the alternative temporary folder /var/tmp for storing your work session files. /var/tmp is a

temporary file system directory, so files are deleted on logoff. However, the files are deleted only when

an explicit logoff is performed, so if the machine reboots unexpectedly due to a system crash, you should

be able to log again and still recover the files. This is not the behaviour of the temporary folder /tmp.

For example, we recommend creating a directory whose name is based on your student number. So, to

prepare your working environment, execute the following command (replacing 123456 with your own

student number):

 [Virtual computer network 2]

$ mkdir /var/tmp/ist123456
$ cd /var/tmp/ist123456

Your home folder ~/ is not recommended for direct use in work sessions because it is an AFS

directory with increased latency due to the distributed file system overhead. However you can use it to

save backups of your virtual disks. You can also save your backups in an external USB drive.

2. Create the virtual networks and machines

This assignment encompasses the creation of virtual networks, for which three separate virtual machine

instances will need to be created, as depicted in Figure 1. Each instance will have a differential disk,

based on the original disk. The differences are stored in files.

Figure 1 – In this laboratory assignment, you will need to create three virtual machines, which will be used to explore communication
inside virtual networks and to test packet forwarding.

First, we are going to create the differential disks, one for each virtual machine:

$ rnl-virt disk create sirs-1 SIRS
$ rnl-virt disk create sirs-2 SIRS
$ rnl-virt disk create sirs-3 SIRS

These names (sirs-1.qcow2, sirs-2.qcow2, and sirs-3.qcow2) are suggestions. They are, respectively,

the disks of instance VM1, VM2 and VM3. These are the files where all changes are stored, so create

backups as needed (any virtual machine you wish to backup must be shut down first).

We have created the virtual hard disks; next we will create the virtual machine instances named VM1,

VM2 and VM3. But before we do so, we must take note: we are going to create two networks: one

between VM1 and VM2 and another between VM2 and VM3, as can be seen in Diagram 1. Since we

are using the rnl-virt system, we must create virtual switches, one per network/subnet. These switches

 [Virtual computer network 3]

need to be associated to the virtual machines before they start running, so we shall create the switches

now:

$ rnl-virt switch create sw-1 --hub
$ rnl-virt switch create sw-2 –-hub

The hub option means that the virtual frames are broadcast in the network.

Diagram 1 - Intended network layout. VM1 and 2 are connected in a virtual network. VM 2 and 3 are connected in another virtual

network. VM2 will operate as a gateway between the two subnets.

This will have created virtual switches sw-1 and sw-2 (again, these names are suggestions). Now that

both the differential disks and the switches exist, we must create the virtual machine instances,

associating each one to the target disk file and switch:

$ rnl-virt vm create VM1 SIRS sirs-1.qcow2 –-switch sw-1
$ rnl-virt vm create VM2 SIRS sirs-2.qcow2 –-switch sw-1 sw-2
$ rnl-virt vm create VM3 SIRS sirs-3.qcow2 –-switch sw-2

Notice that VM2 was associated to both virtual switches: it shall be connected to both subnets and it will

later on be configured as a gateway to allow communication between VM3 and VM1.

Next step, we must start and open each of the virtual machine instances. However, when we open the

graphical interface of a virtual machine, the terminal gets blocked, so we must open new terminal tabs

(on the RNL computer that is being used) and, for each tab, open a specific virtual machine:

$ rnl-virt vm start VM1

 [Virtual computer network 4]

$ rnl-virt vm open VM1

<CTRL+SHIFT+T> to open a new terminal tab

$ rnl-virt vm start VM2
$ rnl-virt vm open VM2

<CTRL+SHIFT+T> to open a new terminal tab

$ rnl-virt vm start VM3
$ rnl-virt vm open VM3

You may now login with user “root” and password “inseguro” on each virtual machine.

Some useful shortcuts are:

 CTRL+ALT – release mouse.

 CTRL+ALT+F – maximize window.

 CTRL+ALT+SHIFT+2/1 – open/close the QEMU console.

To change the display resolution in graphics mode, use the application xLucas and follow the

instructions. To shut down the virtual machine, open a terminal/shell inside the virtual machine and

execute the following command:

$ sudo /sbin/poweroff

3. Configure the machines to use the virtual networks

We will now configure the machines to the virtual network that connects VM1 to VM2 and the one that

connects VM2 and VM3.

3.1 Configure the virtual network for VM1 and VM2

We will now configure the IP network (supported by virtual switch sw-1) with static IP addresses. VM1

and VM2 will talk using a subnet. We will use the private IP addresses 192.168.0.0/24 (meaning that the

subnet mask is 255.255.255.0 – we can have 254 addresses to use - from 192.168.0.1 to 192.168.0.254

– 192.168.0.255 is reserved for broadcast).

 [Virtual computer network 5]

Diagram 2 presents and overview of the desired configuration. The IP address of VM1 will be

192.168.0.100 and VM2 will be 192.168.0.10. The values ending with 100 and 10 are arbitrary, they

could be any value between 1 and 254.

Diagram 2 – Expected layout of the subnet in which VM1 and VM2 will communicate using sw-1.

Follow the configuration procedure for both VM1 and VM2. The presented file contents are just

examples that you will need to adjust to the specific needs.

Create a network interface configuration file named /etc/sysconfig/network/ifcfg-eth0

(or ifcfg-eth-id- followed by the MAC address). Using a basic editor – like vi - set the IP and

netmask values.

The following is an example of the network interface configuration file contents:

BOOTPROTO='static'
MTU=''
REMOTE_IPADDR=''
STARTMODE='onboot'
DEVICE='eth0'
IPADDR='192.168.0.100'
NETMASK='255.255.255.0'
BROADCAST=''
Change the file /etc/sysconfig/network/routes to define the routing rules.

The following is an example of the routing file contents:

 127.0.0.0 0.0.0.0 255.0.0.0 lo
default 192.168.0.10 eth0

 [Virtual computer network 6]

Routes file format details

The /etc/sysconfig/network/routes file defines a routing table. Each line is a routing

rule defined as "column1 column2 column3" and finally the interface name.

 Column 1 is used to provide a destination, which may be a network address, a host

address or the string default to specify the default gateway. Whether the given address

is a host or a network is determined by the netmask given in the third column. The network

mask for a host is always 255.255.255.255. Everything else specifies a network route.

Network route means a route to a network, whereas a host route is a route to a single host;

 Column 2 is either the IP address of the router which should be used to reach the

destination detailed in the previous column, or the special value 0.0.0.0, which means that

all traffic headed to the destination will be given to the device specified in the third column

(if a gateway address is given, the device specification is optional);

 Column 3 contains the netmask.

For example, in the following rule, eth0 would be optional, since the special value 0.0.0.0 is being

used in the second column:

192.168.0.0 0.0.0.0 255.255.255.0 eth0
The final line (default rule, if it exists) defines the default routing and it is typically used to

forward all other IP addresses to the external Internet connection, should it exist.

To finish creating this network, reload the network interfaces of both VM1 and VM2:
$ sudo /etc/init.d/network force-reload

To check that the configuration is correct:
$ /sbin/ifconfig
$ /sbin/route

VM2 should now be able to ping VM1:
$ ping 192.168.0.100

And vice-versa, VM1 should now be able to ping VM2:
$ ping 192.168.0.10

 [Virtual computer network 7]

3.2 Configure the virtual network for VM2 and VM3

We will now configure the IP network (supported by virtual switch sw-2) with static IP addresses.

VM2 and VM3 will talk using another subnet. We will use the private IP addresses 192.168.1.0/24.

Diagram 3 presents the intended configuration. The IP address of VM2 should be 192.168.1.254 and the

address of VM3 should be 192.168.1.1. Again, 254 and 1 are arbitrary values between 1 and 254.

Diagram 3 – Expected layout of the subnet in which VM2 and VM3 will communicate using sw-2.

In VM3 configure eth0 and define the default routing. Here is an example:

127.0.0.0 0.0.0.0 255.0.0.0 lo
default 192.168.1.254 dev eth0

Do not forget that VM2 will have two ifcfg-ethX files: one for eth0 (which already exists at this point) and

another for eth1.

NOTE: On rnl-virt, for each virtual machine, check that the MAC addresses are different. For the

configuration to work properly, there cannot be repeated MAC addresses across all virtual

machines. To confirm this, for each virtual machine, execute:

$ /sbin/ifconfig
In the output, there will be sections beginning with eth0, eth1 and so on (depending on the number

of adapters you have). Check a line like ‘ethY encap:Ethernet HWaddr

XX:XX:XX:XX:XX:XX’. For example:

eth0 Link encap:Ethernet HWaddr 08:00:27:19:58:A7
If there are repeated MAC addresses, use the following command in the machine where you want to

change the MAC address, for the adapter that is repeated:

$ sudo /sbin/ip link set eth0 address 00:00:00:00:00:11
$ sudo /etc/init.d/network force-reload

This would change eth0’s MAC address to 00:00:00:00:00:11.

 [Virtual computer network 8]

In VM2 configure eth1: eth0 is connected to sw-1 and eth1 is connected to sw-2. Define routing rules in

/etc/sysconfig/network/routes:

127.0.0.0 0.0.0.0 255.0.0.0 lo
192.168.0.0 0.0.0.0 255.255.255.0 eth0
192.168.1.0 0.0.0.0 255.255.255.0 eth1
default 0.0.0.0 255.255.255.0 eth0

To finish creating this network, reload the network interfaces of both VM2 and VM3:
$ sudo /etc/init.d/network force-reload

To check that the configuration is correct:
$ /sbin/ifconfig
$ /sbin/route

VM2 should now be able to ping VM3:
$ ping 192.168.1.1

VM3 should now be able to ping VM2:
$ ping 192.168.1.254

3.3 Configure VM2 as gateway

Since VM2 will be the default gateway for VM3, IP forwarding must be enabled. This will allow VM3

to communicate with machines outside the subnet 192.168.1.X.

Open the file /etc/sysconfig/sysctl and set the IP_FORWARD value to yes;

Load the configurations into the kernel:

$ sudo /etc/init.d/boot.ipconfig restart

Confirm that the flag value was updated to 1:

$ /sbin/sysctl net.ipv4.conf.all.forwarding

3.4 Configure NAT (Network Address Translation)

During the previous step, the connectivity test between VM3 with VM1 failed. Since NAT was not

enabled in VM2, the host sent the reply to its gateway, which eventually dropped the packet. Use the

iptables command (man iptables) in VM2 to correct this behaviour. NAT will do the source

and destination mapping.

$ sudo /usr/sbin/iptables –P FORWARD ACCEPT
$ sudo /usr/sbin/iptables –F FORWARD
$ sudo /usr/sbin/iptables –t nat -F
$ sudo /usr/sbin/iptables –t nat –A POSTROUTING –o eth0 –j MASQUERADE

 [Virtual computer network 9]

Test again the connectivity between VM3 and VM1 and check that it is working now:

$ ping 192.168.0.100

4. Monitor network traffic

To monitor the network traffic, we may use VM2 (or another machine, e.g. a VM4, also connected to

the network) to run tcpdump and capture all network traffic. Make sure you can detect ICMP packets

originating at VM3 and destined to VM1 (using ping). Use tcpdump with options –X and –XX and

identify the IP addresses, MAC addresses and protocol in a given packet.

While still running /usr/sbin/tcpdump, open a telnet connection between VM1 and VM2 using

user “fireman” and password “inseguro”. Verify that you can capture both the username and password

with tcpdump.

You have successfully eavesdropped communications… But what is the difference between

executing telnet from VM1 to VM3 with and without NAT? Use tcpdump to analyse the output and

compare the differences.

5. Gracefully turn off the virtual machines

To gracefully close the virtual machines which you deployed using the rnl-virt command, execute the

following on VM1, VM2 and VM3:

$ sudo /sbin/poweroff now

Now, on the host RNL machine, the above command should be enough for the machines to power off

and their rnl-virt windows to close automatically. If so, we are done!

If they do not, we must ask to stop the running virtual machine instances launched during this assignment.

It may occur that after running these commands, the system will say the machines were already stopped

(due to executing the command above). Ask rnl-virt to close the virtual machines anyway (if the virtual

machines have been shut down, use the -f flag for the commands below):

$ rnl-virt vm stop VM1
$ rnl-virt vm stop VM2
$ rnl-virt vm stop VM3

After all the virtual machines have stopped, if their windows are still open on the host system (RNL

computer) you may close their respective windows by pressing the X button on the top-right corner of

the window.

