
Distributed Systems LEIC/LETI, Instituto Superior Técnico, Universidade de Lisboa, 2015

Quorum Consensus

Replication1

These are companion notes that should

be complemented with the definitions,

pseudo-code and examples that are

included in the teaching slides (available

at the course’s web site).

Read and Write Thresholds

In the quorum consensus (QC)

algorithm, we assign a non-negative

weight to each copy of a register x. We

then define a read threshold RT and

write threshold WT for x, such that both

2WT and (RT + WT) are greater than the

total weight of all copies of x. A read (or

write) quorum of x is any set of copies of

x with a weight of at least RT (or WT).

The key observation is that each write

quorum of x has at least one copy in

common with every read quorum and

every write quorum of x.

Basic Algorithm

In QC, the client front-end is responsible

for translating Reads and Writes on data

items into Reads and Writes on copies.

A client front-end translates each

Write(x) into a set of Writes on each

copy of some write quorum of x. It

translates each Read(x) into a set of

Reads on each copy of some read

quorum of x, and it

returns to the application the most up-

to-date copy that it read.

1 Adapted from “Concurrency Control and
Recovery in Database Systems” (Copyright ©
1987 by Philip A. Bernstein, Vassos Hadzilacos,
and Nathan Goodman) and “Sharing memory

To help the client front-end figure out

which copy is most up-to-date, we tag

each copy with a version number, which

is initially 0, and a client-id field

(assuming each client is identified with a

unique number). When the client front-

end processes Write(x), it determines

the maximum version number of any

copy it is about to write, adds one to it,

and tags all of the versions that it writes

with that version number and its client-

id. Clearly, this requires reading all of

the copies in the write quorum before

writing any of them.

The version numbers measure how up-

to-date each copy is. Each Read of a

copy returns its version number along

with its data value. The client front-end

always selects a copy in the read

quorum with the largest version number

(there may be more than one such copy

but they will all have the same value). If

two different copies have the same

version number but different client-ids,

the client front-end selects the one with

highest client-id.

The purpose of quorums is to ensure

that Reads and Writes that access the

same data item also access at least one

copy of that data item in common.

Even if some copies are down and are

therefore unavailable to Reads and

Writes, as long as there are enough

copies around to get a read quorum and

write quorum, client front-end can still

continue to execute.

robustly in message-passing systems” (in JACM
42, 1, Jan. 1995, 124–142, by Attiya, H., Bar-
Noy, A. and Dolev, D.)

Distributed Systems LEIC/LETI, Instituto Superior Técnico, Universidade de Lisboa, 2015

For a given object, the QC algorithm

ensures that, when a client reads some

data item x when no write to x is

concurrently happening, the returned

value will correspond to the value of the

most recent write to x. This is because

the read operation will receive values

from a read quorum of x, while the

previous write to x updated a write

quorum of x. Since every read and write

quorum have a nonempty intersection,

the read will at least receive one value

of the previous write (and possibly some

outdated values from older writes). As

the most recent write has a bigger

version number, the read will choose

that value.

Note that, if there is one or more writes

to x taking place concurrently with

the read, the return value can either be

the value of the most recent completed

write or the value of one of the

concurrent writes. This is a problem, as

a front-end that executes a sequence of

reads concurrently with one or more

writes can see an inconsistent sequence

of values (e.g. first read returns the fresh

value of the ongoing write; then second

read receives responses from outdated

replicas, thus returning the older value).

ABD Variant

A variant to the QC algorithm that

avoids the previous pathological case

consists of adding a writeback phase to

every read. In this writeback phase, the

front-end that has just read a given

value v associated with a tag t will send

a Write(v, t) request to all replicas and

wait for WT acks.

It is easy to show that this additional

phase ensures that any subsequent

read will not observe from the past of

v. Hence, the pathological case that we

previously described is prevented.

Discussion

A nice feature of QC is that recoveries of

copies require no special treatment.

A copy of x that was down and therefore

missed some Writes will not

have the largest version number in any

write quorum of which it is a member.

Thus, after it recovers, it will not be read

until it has been written at least once.

That is, client front-ends will

automatically ignore its value until it has

been brought up-to-date.

Unfortunately, QC has some not so nice

features, too. Except in trivial

cases, a client front-end must access

multiple copies of each data item it

wants to read. Even if there is a copy of

the data item at the client's site (i.e., the

client is a replica too), the client front-

end still has to look elsewhere for other

copies so it can build a read quorum. In

many applications, clients read more

data items than they write. Such

applications may not perform well using

QC. One might counter this argument by

recommending that each read quorum

of x contain only one copy of x. But then

there can only be one write quorum for

x, one that contains all copies of x. This

would lead us to the

write-all approach, which we found was

unsatisfactory.

A second problem with QC is that it

needs a large number of copies to

Distributed Systems LEIC/LETI, Instituto Superior Técnico, Universidade de Lisboa, 2015

tolerate a given number of site failures.

For example, suppose quorums are all

majority sets. Then QC needs three

copies to tolerate one failure, five copies

to tolerate two failures, and so forth. In

particular, two copies are no help at all.

With two copies QC can’t even tolerate

one failure.

A third problem with quorum consensus

is that all copies of each data item must

be known in advance. A known copy of

x can recover, but a new copy of x

cannot be created because it could alter

the definition of x’s quorums. In

principle, one can change the weights of

the sites (and thereby the definition of

quorums) while the replicated system is

running, but this requires special

synchronization.

